INTERNATIONAL JOURNAL OF

SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 38 (2001) 8037-8052

Deriving structural theorems and methods using
Tellegen’s theorem and combinatorial representations

O. Shai *

Department of Mechanics, Materials and Systems, Tel Aviv University, The Iby and Aladar Fleischman Faculty, Tel Aviv 69978, Israel
Received 15 April 2000

Abstract

The paper shows that there are theorems and methods in structural engineering that can be derived from Tellegen’s
theorem of network graphs. This is demonstrated by deriving from this theorem, Betti’s law and the known method for
analyzing displacements of truss joints.

This work is a part of a general research approach in accordance with which combinatorial representations (CR)
were developed and then applied to represent various engineering systems. In doing so, new connections between
engineering fields that traditionally are considered to be unrelated are found. These connections enable augmentation of
engineering knowledge in one engineering field by using analogous knowledge from another. This issue is demonstrated
in the paper by applying knowledge and methods from electricity to structural mechanics and from machine theory to
truss analysis on the basis of the connections between the corresponding CR of these fields. © 2001 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

The work reported in the paper is part of a general approach, called — multidisciplinary combinatorial
approach, which uses combinatorial representations (CR), for a variety of applications (Shai, 2001b). In the
course of this research, CR were developed, the properties of each were examined, and a comprehensive
investigation was carried out to establish the connections between them. These representations were then
applied to solving engineering problems. This was done by searching among the CR for those which are
isomorphic to given engineering problems.

This approach was found to be useful in many aspects, some of which are: checking the validity of en-
gineering systems (Shai and Preiss, 1999a); developing new types of representations in artificial intelligence
(Shai and Preiss, 1999b); proving that known algorithms in structures can be derived and even considered
to be special cases of known algorithms in CR (Shai, 1999). The CR that are used by the approach include
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Nomenclature

0 zero matrix
A(e) cut area of rod e

A reduced vector incidence matrix
B scalar circuit matrix

B vector circuit matrix

CR combinatorial representations
D(e)  deformation of rod e

D vector of deformations

dim(G) the dimension of the graph

dr(G) number of edges with known potential difference values
E(e) modulus of elasticity of rod e

E(G) set of edges of graph G

¢(G)  number of edges in graph G

F vector of flows

F(e) flow in edge e

Fe vector of flows in the flow sources
F(e) value of the flow in edge e

G graph

G(e) conductance of edge e

Gr flow graph

Ga potential graph

GR real potential graph

G}’ virtual flow graph

Gr resistance graph

L(e) length of rod e

MCA Multidisciplinary combinatorial approach

Q vector scalar matrix

Q scalar cutset matrix

F(e) unit vector in the direction of edge e
R(e) resistance of edge e

T statically determinate truss

V(G) set of the vertices of graph G
v(G)  number of vertices in graph G

A vector of potential differences
A(e)  potential difference in edge e
(i potential of vertex i
7t vector of potentials

graphs, matroids and discrete linear programming. The current paper is entirely dedicated to the graph
representations, although the matroid theory is also applicable to structural analysis (Shai, 1999; Kaveh,
1995). Matroid theory enables to obtain a general perspective on problems from graph and network
theories (Ir1 and Tomizawa, 1975; Shai, 2001b).

The first general use of graph theory in engineering appears to be due to Kron (1963), who showed the
analogy between electrical networks and elastic structures. He utilized graphs and networks to obtain a
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uniform method for analysis of large-scale systems. The idea of Kron was to tear the system into several
components by means of the corresponding graphs, solve them separately and then to recombine the so-
lutions until the solution of the entire system is obtained. Another unified approach that employs networks
was suggested by Wang and Bjorke (1991). The aim of his work was to establish a unified theory to govern
a manufacturing system. The network concept was considered as a unified principle in engineering also by
Branin (1977).

A computational approach based on graph theory was suggested by Fenves and Branin (1963) and
Fenves et al. (1964). On the basis of this approach he developed the software system called “STRESS”.
Fenves and Gonzalez-Caro (1971) and Munro (1977) employed graph theory in plastic analysis and de-
sign. For dynamical systems a ‘“vector-network model”” was established by Andrews (1971) on the basis of
applying vector mechanics and graph theory to formulation of dynamic motion equations. Kaveh has also
employed graph theory (Kaveh, 1991) and was the first one to apply matroid theory for developing efficient
structural analysis (Kaveh, 1995, 1997). Kaveh has worked on the improvement of the sparsity of the
flexibility matrix by using the correlation between the set of self-equilibrating stress systems and the cycle
basis of the graph model of the structure.

There are several unique contributions provided by using the CR, whose comprehensive description can
be found in (Shai, 2001a,b). The current paper focuses on application and study of only two of these
representations. First of them is the ability to convert methods and theorems from one engineering field to
another. This can be done when two domains are represented by the same CR thus enabling the following
process: the knowledge from one field is supplied to the common representation, generalized using the
inherent properties of the CR and then applied to the other domain represented by the same representation.
This ability is employed in this paper when the resistance graph representation (RGR) is applied to rep-
resent both electrical circuits (Shai, 2001b) and structures (Shai, 1999). Since electricity domain possesses
Tellegen’s theorem, it is supplied to the corresponding representation, where it is generalized and then
applied to derive the formula for joint displacement (Section 3.4) and Betti’s law (Section 3.5). The second
advantage of using these CR is the ability to derive new connections between engineering fields on the basis
of the connections between their corresponding CR. Such connections have been established when two
engineering domains were represented by two mathematically interrelated representations. Consequently,
same relations were established between the two represented engineering domains themselves. On the basis
of this concept a new connection between mechanisms and determinate trusses was derived since their
corresponding CR were found to be dual (Shai, 2001a). This property is employed in the paper where
instead of analyzing a determinate truss its dual mechanism was analyzed utilizing methods from machine
theory (Section 4.1).

2. Combinatorial representations

The CR that are used in this paper are based on network and graph theories, the relevant details of
which can be found in (Shai and Preiss, 1999b) or books on graph theory, such as (Swamy and Thulasi-
raman, 1981).

Before approaching the CR themselves, a brief review of the definitions will be given. The paper uses
terms from network theory where graphs are usually described by matrices such as cutset, circuit and in-
cidence matrices (Balabanian and Bickart, 1969). In the current approach, graphs are used to represent
both the topology and the geometry of the engineering system, thus the matrices are resolved in two
corresponding types: vector and scalar matrices. The first type is actually the known matrices that are used
in the network theory, where the term ‘vector’ stands for the fact that these matrices provide information
about the topological relations between the vectors without considering the geometry of the correspond-
ing elements. The second type of matrices — scalar, provides the information about the geometry of the
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Table 1
Graph CR and their usage
FGR PGR RGR
Vertex variables Potential — 7 Potential — 7
Edge variables Flow — F I:otential difference — Iiotential difference —
Ahead il = Trail = Thead Ahead il = Tail = Thead
Flow law — sum of flows in every Satisfied Not satisfied Satisfied
cutset is equal to zero: Q F=0
Potential law — sum of potential Not satisfied Satisfied Satisfied
differences at every circuit is equal to
zero: B-A=0
Terminal equations A(e) = R(e) - F(e); F(e) = G(e) - 4(e)
Represented engineering systems Determinate trusses, Mechanisms Indeterminate trusses, dynamic sys-

tems, hydraulic systems, integrated
systems
Publications in which the represen- Shai (2001a,b) Shai (2001a,b) Shai (1999, 2001b), Shai and Preiss
tation has been introduced (1999b)

Static systems

corresponding engineering elements. These matrices can be obtained from the vector matrices by multi-
plying each of the non-zero members with a unit vector in the direction of the edge corresponding to the
member’s column. These definitions were found to be useful since they help to reveal the topological and
geometrical properties embedded in the graphs.

Edges in the graphs of the current paper are designated in accordance with their properties as follows: a
solid line — represents an edge with unknown value of flow or potential difference; a bold line — represents an
edge for which the flow or potential difference is known; a dashed line — represents a chord, which is an edge
not included in the spanning tree; a double line — represents a branch of a spanning tree.

Table 1 reviews three CR that are used in this paper: Flow graph representation (FGR), potential graph
representation (PGR) and the RGR.

2.1. Resistance graph representation for structures

Since the issue of representing a truss by the RGR is fundamental for this paper, the current subsection
provides a deeper insight into it.
An important property that is associated with resistance graph is the orthogonality principle that states
the following relation between the cutset and circuit matrices of a graph (Swamy and Thulasiraman, 1981):
Qt ‘B=0 (1)
Egs. (2) and (3) are the immediate outcomes of the orthogonality principle (Shai, 1999) and are used in the
current paper.

—

A=Q'A; (2)

F=B'"Fc (3)

where KT is the vector of potential differences in the edges of the spanning tree and Fe is the vector of flows
in the edges of the chords.

The stages for representing a truss by a resistance graph can be found in (Shai, 1999). The physical
meaning of the vertex potential is the vector of displacement of the corresponding joint. The dependence
(resistance or conductance) between the flow and the potential difference of the truss edge is based on
Hooke’s law:
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D(e) = % Fe)] @)

where D(e) is the deformation of the rod e, L(e) is the initial length of the rod, A(e) is the section area of the
rod, and E(e) is the modulus of elasticity of the rod.

Under the small deflection assumption (West, 1993), the angle change of the rod can be neglected when
dealing with axial forces. Nevertheless it cannot be neglected when dealing with the deformation, since the
deformation is also relatively small. Hence the potential difference in the rod differs from its length change
and there is no explicit dependence between the magnitudes of the flow and the potential difference.
Therefore, the terminal equation is to be expressed by means of a matrix.

Let 4,(e) and F;(e) be the ith coordinate components of the potential difference and the flow at edge e.
The general truss member under deformation is shown in Fig. 1.

Under the small deflection assumption, one can derive the following equation connecting the defor-
mation (equal to the magnitude of the potential difference) and the coordinate components of the edge
potential differences:

D(e) = |4(e)| = A,(e)cosa + A,(e) sina (5)

Combining Egs. (4) and (5) gives:

TBx

AY

A A
4e)
Tty
y
initial state
of the rod
[y |
e actual
deformation -
< D(e)
7\ A 4(e)
”Ay
A - \ > x
final state
» of the rod
TTAx

Fig. 1. The description of potential differences of deflected rod.
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po - (5) -0 2, 5 (1) -oome(13) a4

and T(e) is called ‘transformation matrix’ of the element.

Thus, the two-dimensional conductance matrix for truss edges becomes a product of the constant
conductivity and the transformation matrix. The axial forces in the rods of an indeterminate truss cannot
be determined by the laws of statics alone, hence one must also consider the compatibility conditions. In the
terminology of combinatorial representation the resistance graph representing the indeterminate truss
should be analyzed using both flow and potential laws.

3. Tellegen’s theorem

The theorem discussed in this section was developed by Professor BDH. Tellegen (Tellegen, 1952) and
therefore bears his name. The main use made of this theorem nowadays is in electric circuit theory (Penfiel
et al., 1970; Chua et al., 1987), but it is also used in hydrostatics (Simon et al., 1996), and thermodynamics.
In vector-network method (Andrews, 1971) of dynamics, a principle of orthogonality was used, while it was
claimed that this principle is an extension of Tellegen’s theorem (Andrews and Kesavan, 1978). In electric
circuit theory this principle is formulated as follows:

Tellegen’s theorem (electrical circuit theory formulation): Let us measure at some time # all voltages A4, (¢)
and all currents i, (¢) in an electrical circuit, then

ST 40 - ikl) = AYE) - X(e) = 0 ®)

This paper applies Tellegen’s theorem to multidimensional systems and uses it for proving theorems and
methods in structural engineering. In order to do that, the theorem is rewritten in the terminology of
combinatorial representation, as follows:

Tellegen’s theorem (CR formulation): Let Gr and G, be isomorphic flow and potential graphs, then:

> F (e) - dg,(e) =0 9)

all edges

This theorem is proved in the literature in different ways (Dolan and Aldous, 1993). Two of the proofs are
presented in the paper, each giving a different insight on the CR.

3.1. Proof based on the flow law

Starting with the flow law, using the vector incidence matrix gives:

A(Gr) - F(Gr) =0 (10)
The main property of the vector incidence matrix is that in each column there are at most two entries
different from zero, namely: ‘+1” and ‘—1’. Since a potential is associated with each row, multiplying A' by
the vector of potentials gives the potential difference vector, as follows:
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AY(Gy) = 7(Ga) - A(Ga) (11)
therefore:
A'(G,) - F(Gr) = (#(Ga) - A(Ga)) - F(Gr) = ##'(Ga) - (A(Ga) - F(Gr)) (12)

Since G, and Gg are isomorphic, the last expression is equal to zero due to the flow law (Eq. (10)), thus:
A'(Ga) - F(Gr) =0 (13)

From this proof, one can see that Gg (G,) should only satisfy the flow (potential) law without restriction on
its potentials (flows).

Proof based on the orthogonality principle: On the basis of the orthogonality principle (Eq. (1)) one can
perform the following substitution:

A'(Gy) - F(Gr) = (Q'(Ga) - Ar)' - F(Gy) (14)
Applying Egs. (2) and (3) give:
AY(Ga) - F(Gr)

—

= (Q'(Ga) - Ar(Ga))' - F(Gr) = (AL(Ga) - Q(Gy)) - (B'(Gr) - Fo(Gr))
= A(Ga) - (Q(Gy) - B'(Gr)) - Fe(Gr) (15)

since G, and Gy are isomorphic, the last expression is equal to zero due to the orthogonality principle.
3.2. Tellegen’s theorem in one-dimensional trusses

Before dealing with multidimensional systems let us consider the interpretation of Tellegen’s theorem in
a one-dimensional engineering system, because of the simplicity of its explanation.

Example. Fig. 2 shows a one-dimensional statically indeterminate truss, the one-dimensional flow graph
representing it and the corresponding matrices.

The scalar matrices are obtained from the vector matrices by multiplying each column by its corre-
sponding unit vector. Since the example in Fig. 2 is one-dimensional all the columns are multiplied by either
sin(90°) or sin(270°) depending on whether the edge is directed upwards or downwards. One can see that
such a multiplication preserves the validity of the orthogonality for the scalar matrices.

Any vector F that satisfies the flow law is a feasible flow vector of the graph, hence is a feasible force
vector of the truss. The orthogonality principle states: Q(G) - B'(G) = 0. Thus every row i of B(G) satisfies
Q(G) -B'(G), , =0, hence it is a feasible vector of forces in the truss, i.c. it is a state of self stress. For
example, first row of B(G) gives the set of forces presented in Fig. 3.

From equation F = B'(G) - F¢, and the orthogonality principle it follows that every feasible force can be
obtained from B(G) as a linear combination of its rows.

In a similar way the rows of Q(G) are proved to be a set of feasible displacement vectors. Let A be a set
of feasible displacements, i.e. it satisfies B(G) - A = 0. On the basis of equation A = Q'(G) - Ar, and the
orthogonality principle, we conclude that every feasible displacement vector is a linear combination of the
scalar cutset matrix rows. For example, the first row of Q gives the following feasible set of potential
differences, as shown in Fig. 4.

On this basis of the above properties of the matrices it follows that the rows of the cutset (circuit) matrix
span the linear space of feasible displacements (forces) of the structure. This is derived from the properties
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Fig. 2. Example of a one-dimensional truss, its graph and the corresponding matrices. (a) One-dimensional truss, (b) corresponding
graph, (c), (e) vector and scalar cutset matrices and (d), (f) vector and scalar circuit matrices.

F -1
C F, 1
5 K 0
3 . = B F, -
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F, 0

N
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Fig. 3. Example of a self stress state corresponding to a row of the scalar circuit matrix. (a) The self stress state, (b) the first row in the
scalar circuit matrix.

of these matrices. The results obtained in the following sections are also based on the connections between
the two matrices.
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3.3. Tellegen’s theorem for multidimensional systems

As can be seen from the vectorial form of Tellegen’s theorem, the theorem can also be applied to
multidimensional flows and potentials, each having a component for each coordinate. The vector cutset
(circuit) matrices depend only on the topology of the graph, hence they do not differ from the one-
dimensional case. Therefore for two isomorphic multidimensional graphs Gr and G,, the Tellegen’s the-
orem is valid: ﬁ‘(GF) - A(Gy) = 0, because the orthogonality principle (Eq. (1)) remains unchanged. For the
simplicity of the explanations, the paper deals with two-dimensional structures, although the approach is
applicable to three-dimensional trusses as well.

3.3.1. Applying Tellegen’s theorem to the resistance graphs representing plane trusses

This section presents a special case of two-dimensional graphs, which represent trusses. In this case, the
multidimensional Tellegen’s theorem is formulated in scalar form. Eq. (16) is written for each of the di-
mensions of the resistance graph as follows:

F.(Gr) - Ad(Ga)= Y F(Gr)4,(Ga)+ Y P,(Gr)dp,(Ga)

rods of the truss external forces

D Ry(Gr)4p,(Ga) =0

external reactions

F(Gr) AGa)= D> F(Gr4,(Ga)+ Y P(Gr)4p,(Ga)

rods of the truss external forces

+ > Ry(Gr)d,(Ga) =0

external reactions

For each type of reaction, mobile or fixed support, in each coordinate, one of the multipliers (reaction
force or the potential difference) is equal to zero. Therefore, the multiplication is always equal to zero, hence
the terms concerned with reactions vanish, and the following equations remain:

F.(Gr) - AdGa)= > |F(Gr)|cosa;-4,(Ga)+ Y |P(Gr)|coso; - Ap (Ga) =0
rods of the truss external forces
F\(Gr)-A(Ga)= > [F(Ge)lsing-4,(Ga)+ > |B(Gg)|sina; - 4p (Ga) =0
rods of the truss external forces
(17)
P,
A 4 1
C 4, 0
“““ C 4, 0
P 5 4, -1
i Bl 4 |7
4 s
A 2 4 1
A' ) 4p -1
4p, 1

(a) ®

Fig. 4. Example of a feasible set of displacements corresponding to a row of cutset matrix. (a) Displacements state, (b) the first row in
the scalar cutset matrix.
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The potential differences in the edges corresponding to the external forces are equal to the difference be-
tween potentials of the reference vertex and of the vertex upon which the external force is applied. Since the
potential of the reference vertex is equal to zero, the potential difference of the external force edge becomes
equal to the potential of the vertex upon which the force is applied with the minus sign:

Gn(G) = ~7(G) (18)
Summing up Eq. (16) and substituting Eq. (18) gives:
> F(Gr)(cos4,(Gy) +sino4,(Ga)) = Y P(Gr) - 7p(Ga) =0 (19)
rods of the truss external forces
Substituting Eq. (5) to Eq. (19) gives:
Fi(Gr) - Di(Ga) — Z P(Gr) - t(Ga) = 0 (20)
rods of the truss external forces

By the definition, the force and the displacement in each truss element are parallel, hence the multiplication
of magnitudes in the last equation can be replaced by scalar multiplication of the corresponding vectors:

> E(Gr)-Di{Ga)— Y. F(Gr)-Dp(Ga) =0 (21)

rods of the truss external forces

The last equation will be referred in the paper as the: “Multidimensional Tellegen’s theorem for Trusses”.
3.4. Deriving the method for determination of joint displacements from Tellegen’s theorem

In this section, it will be shown that the known equation for determining the displacement of a joint in a
truss is a special case of the Multidimensional Tellegen’s theorem for Trusses.

In order to apply Tellegen’s theorem, two of the combinatorial representations that were given in Table 1
will be used. The steps for building the CR are the same as was explained in (Shai, 2001b). An extra edge,
called “control edge”, is added to both. Its head vertex is the vertex whose displacement is to be deter-
mined, and the tail vertex is the reference vertex.

The CR - the flow and potential graphs are used in two different ways as follows:

For the real potential graph G} the flow values in the source edges are the values of the external forces.
In the control edge we put a ‘potential difference measurement’, which corresponds to a potential difference
measuring device (like voltmeter in electrical circuit) that is located between the end vertices of the cor-
responding edge. The ‘R’ superscript over G indicates, that the potential differences in it are due to the
“real” external forces applied to the structure.

For the virtual flow graph G\F’ all the source edges, which correspond to the external forces are assigned
flow sources with values equal to zero. One can think about it as a disconnection. In the control edge, a unit
force is applied in the direction of the displacement that has to be measured. The “V’ superscript over G
indicates that the flows in the graph are not the real forces in the structure, but the forces due to an ar-
bitrary virtual external force applied onto the structure.

Applying the multidimensional Tellegen’s theorem to the two graphs, gives:

Z E(GL‘/) 'Bi(Gi) - Z 0- BPf (GEA{) -1 'Dcontrol(Gi) =0 (22)
rods of the truss external forces
From here, the well-known equation (West, 1993) for analyzing the displacement of a joint is derived:
F(Gy) - F(Gy) - Li

Dcomrol(Gi) - Z A - E. (23)

rods of the truss
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D =+0.0025

D =-0.0032
Df =+0.00187
DF =-0.00045

DE = +0.000625

©
10) = Fuo( G )-Dyo( G} ) + Fue G5 ) Do G ) + Fuo( G )-Deo( G} ) = (0.375- -0.00045) +

(-0.625- 0.000625) + (-0.625-0.001875) = -0.001731[m]
@

Fig. 5. Example of analyzing joint displacement by the multidimensional Tellegen’s theorem. (a) The truss, (b) the virtual flow graph
G}', (c) the real potential graph Gi and (d) calculation of the displacement of joint c in the direction of the x-axis.

An example for applying Eq. (23), is given in Fig. 5, where the horizontal displacement of joint ¢ is to be
determined.

3.5. Deriving Betti’s law from Tellegen’s theorem

The conventional proof of Betti’s law is based on energy considerations (West, 1993), while in this
section, it is proved on the basis of Tellegen’s theorem.
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Suppose, a truss and two different sets of external loads applied on it are given. The first set of exter-
nal loads P1 causes joint displacements, #%;, internal forces F1 and deformations D1 The second set of
external loads Pz causes joint displacements #,, internal forces F2 and deformations D2.

Since both sets of loads act on the same truss, and the forces (potential differences) satisfy the flow
(potential) law, then according to Tellegen’s theorem (Eq. (9)) multiplication of forces from one set by the
potential differences from the other set is equal to zero, as follows:

(Fg P;)-(_ﬁ,;)oﬂFg-Dng.npz (24)
rehaonce - dnsonm
Pt EPZ—F ‘D, = F,-(R-F,)=(F,-R)-F, = D! F, (25)
Another form of the Tellegen’s theorem for the two graphs is:
(F ) (2 )-0-RBi-Bo5 26)
—Rp,

Combining the last two equations gives:
I_”tl ' EPz = f’lz ’ ﬁP} (27)
Eq. (27) is known in the literature as the reciprocity theorem or Betti’s law (West, 1993).

4. Using augmented knowledge from combinatorial representations

As mentioned in the introduction, using CR in engineering enables to use a single representation for
several different engineering fields. This enables usage of knowledge and methods from one field in the
other, as is demonstrated in the current section.

Based on the properties of the FGR (Shai, 2001a), its dual graph corresponds to the PGR. Moreover, it
has been proved (Shai, 2001a) that instead of analyzing a determinate truss, one can find its dual mecha-
nism, and perform a velocity analysis on it by using methods and theorems from machine theory. The
methodology for building a mechanism dual to a truss is related in a certain way with the process of
building the famous Maxwell-Cremona diagrams for a truss (Timoshenko and Young, 1965), but the
purpose and the outcome of the two are quite different. The idea of employing these results in truss analysis
is carried out in the following subsection.

4.1. Analyzing the joint displacement using the dual mechanism

This issue is explained using the example of Fig. 6. The external force P is applied at joint ¢ and the
displacement of joint ¢ along the direction of P is to be determined.

In order to solve this problem, one should use Eq. (23) developed in Section 3.4. To apply this equation
the potential differences in G} and flows in Gy should be determined. The first step is to obtain the de-
formations of the rods by one of the various methods for analysis of statically indeterminate trusses. This
way the potential differences in G} are calculated. The second step is to find any solution that satisfies only
the force equilibrium in the truss, when a unit external force is applied at the same location and direction as
P. This way the flows in G\F] are found. The forces can be obtained by setting all the forces in the redundant
rods to zero and solving the resultant determinate truss. This procedure significantly simplifies the solu-
tions, since instead of analyzing an indeterminate truss, a determinate truss is analyzed. This leaves us with
analysis of a determinate truss, for instance, the one shown in Fig. 7.
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S
k><>< L

Fig. 6. Statically indeterminate truss.

Fig. 7. Determinate truss.

The graphs corresponding to the application of the Tellegens’ theorem are shown in Fig. 8.
Using the above-mentioned result obtained in (Shai, 2001a) the analysis of determinate truss can be
transformed into the velocity analysis of its dual mechanism shown in Fig. 9.
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8050

(b)

(a)
Fig. 8. The graphs corresponding to the truss in Fig. 7. (a) The real potential graph — GX, (b) the virtual flow graph — G‘F/

e mm————

(b)

(a)

Fig. 9. The mechanism dual to the truss in Fig. 7. (a) The flow graph representing the truss and its dual potential graph superimposed

and (b) the dual mechanism.
The solution of the dual mechanism is immediate, since it is the known mechanism called “Stephenson

type IIT”” (Erdman and Sandor, 1997), for which there is an efficient solution method, where the driving link

is exchanged and the image velocity diagram is drawn, as shown in Fig. 10.
The forces in the initial truss are proportional to the corresponding lengths in the image velocity diagram

of Fig. 10 as follows:



O. Shai | International Journal of Solids and Structures 38 (2001) 8037-8052 8051

D

Enhancing the image velocity
diagram as to fit the velocity of
the initial driving link

»
»

o

Fig. 10. Building the image velocity diagram for the mechanism shown in Fig. 9.

Fle)=p-¢ (28)
where ¢’ — the length corresponding to link e measured from diagram in Fig. 10 and x4 = (P/od) = (1/0d)

5. Conclusions

The paper has shown that when structural systems are represented by CR, theorems inherent in these
representations can be used to prove properties of the structural systems. The paper used two CR: the flow
and resistance graphs. Using Tellegen’s theorem from network theory, and other properties of CR, a
known method for determining the displacements of the truss joints was derived in a different way. Also, an
alternative method of proving theorems of structural mechanics was given in the paper by showing that
Betti’s law is derived from Tellegen’s theorem.

Using CR enables one to obtain a global perspective of different engineering fields, by finding novel
connections between them on the basis of the connections between their corresponding CR. In the example
shown in the paper, the trusses are represented by the FGR and mechanisms by the PGR. Since these
representations have been proved to be dual, it follows that trusses are dual to mechanisms. Accordingly,
the analysis process for the truss was transformed to the velocity analysis of its corresponding dual
mechanism, which enabled to employ methods and algorithms developed in machine theory.
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